Select Page

The formal expression of binomial theorem is as follows:

(a + b) = a b

⦿ (1 + x)ⁿ = 1 + ⁿC₁ x +ⁿC₂ x² + ⁿC₃ x³ + ⁿC₄ x⁴ + ……….
now understand multinomial theorem:-

(1-x) = 1 + nx + x + x +.............∞ = 1 + nx + x + Cx + Cx + ...............∞

∴ Coefficient of xʳ in (1-x)⁻ⁿ
= ⁿ ⁺ ʳ ⁻¹Cᵣ
& Since we know that ⁿCᵣ = ⁿCₙ₋ᵣ
∴ ⁿ ⁺ ʳ ⁻¹Cᵣ = ⁿ ⁺ ʳ ⁻¹C₍ₙ ₊ ᵣ ₋ ₁₎ – ᵣ
                   = ⁿ ⁺ ʳ ⁻¹Cₙ₋₁

= So to find the coefficient of x in (1-x): -= i.e. coefficient of x😃 in (1-x) = 😃

Example:-

⦿ Coefficient of x¹⁰ in (1-x)⁻ⁿ = ¹⁰⁺⁽ⁿ⁻¹⁾Cₙ₋₁
⦿ Coefficient of x¹⁵ (1-x)⁻ⁿ = ¹⁵⁺ⁿ⁻¹Cₙ₋₁
⦿ Coefficient  of x⁸ in (1-x)⁻ⁿ = ⁸⁺⁽⁵⁻¹⁾C₅₋₁ = ¹²C₄

(Q). Find the coefficient of x⁶ in ((1+x)¹⁰ + 10x³ + 6x⁶)

No contribution= Answer

⦿ n identical objects can be distributed among r person in 

x + x + x + x + .........+ x = nIdentical objectsr persons (different boxes)total (r-1) plates

So distribution of n identical object among r person & number of integral solution of equation x₁ + x₂ + x₃ + x₄ + x₅ + ……….. + xᵣ = n 
         where x₁, x₂, x₃, x₄, x₅,……….xᵣ ≥ 0
have the same solution which is 

Using Multinomial theorem to find the number of non-negative integral solution of equation
 x₁ + x₂ + x₃ + x₄ + x₅ + ……….. + xᵣ = n 

= coefficient of x in (.( ...........(total r brackets= coefficient of x in (= coefficient of x in (= coefficient of x in (Since these terms willnot contribute to powerof x= coefficient of x in = coefficient of x in (1-x)=

(Q). Find the number of non-negative integral solution of x + y + z = 20
Solution-

x + y + z = 20               x≥0
                                        y≥0
                                        z≥0

x + y + z = 20method (1):2

= ²⁰⁺²C₂
²²C₂ Answer

method(2):S= coefficient of p²⁰ in (p⁰ + p¹ + p² + …….. p²⁰)³
= coefficient of p²⁰ in (1 + p¹ + p² + …….. p²⁰ + p²¹ + p²² + …….. ∞)³
=  coefficient of p²⁰ in  {\left( {\frac{1}{{1 - p}}} \right)^3}
= coefficient of p²⁰ in (1-p)⁻³
= ²⁰ ⁺ ⁽³⁻¹⁾C₃₋₁
=²²C₂ Answer

(Q). Find number of positive integral solution of x + y + z = 20
Solution:-

x + y + z = 20                  x≥ 1
                                           y≥ 1
                                           z≥1

method (1):x + y + z = 201 1 1x + y + z = 17 x⩾0 y⩾0 z⩾0= Answer

Method (2):-

Coefficient of p²⁰ in (p¹ + p² + p³ …….. p²⁰)³
= Coefficient of p²⁰ in (p + p² + p³ + …….. p²⁰+ ……..∞)³
= Coefficient of p²⁰ in  
{\left( {\frac{p}{{1 - p}}} \right)^3}
Coefficient of p²⁰ in p³(1-p)⁻³
= Coefficient of p¹⁷ in (1-p)⁻³
= ¹⁷⁺⁽³⁻¹⁾C₍₃₋₁₎
¹⁹CAnswer

(Q). Find the number of  non-negative integral solution of a + b + c + 4d = 20
Solution:-

a + b + c + 4d = 20                      20≥a≥0
                                                        20≥b≥0
                                                        20≥b≥0
                                                        5≥b≥0
Method(1):

a + b + c + 4d = 20 
⦿ d = 0 ⟹ a + b + c = 20 ⟹ ²²C₂
⦿ d = 1 ⟹ a + b + c = 16 ⟹ ¹⁸C₂
⦿ d = 2 ⟹ a + b + c = 12 ⟹ ¹⁴C₂
⦿ d = 3 ⟹ a + b + c = 8 ⟹ ¹⁰C₂
⦿ d = 4 ⟹ a + b + c = 4 ⟹ ⁶C₂
⦿ d = 5 ⟹ a + b + c = 0 ⟹ ²C₂

Hence Answer = ²²C₂ + ¹⁸C₂ + ¹⁴C₂

+ ¹⁰C₂ + ⁶C₂ + ²C₂
= 231 + 153 + 91 + 45 + 15 + 1
=536 Answer

Method(2):

a + b + c + 4d = 20
⟹ a + b + c = 20 – 4d
Let d be a contant k where 5≥k≥0
∴ a + b + c = 20 – 4k             5≥k≥0           

= ²²C₂ + ¹⁸C₂ +¹⁴C₂ + ¹⁰C₂ + ⁶C₂ + ²C₂
536 Answer

Methode(3): Using multinomial theorem:-

Coefficient of p²⁰ in (p⁰ + p¹ + p² + p³ …….. + p²⁰)³(p⁰ + p⁴ + p⁸ + p¹² + p¹⁶ + p²⁰)
= Coefficient of p²⁰ in (1 + p + p² + p³ …….. + p²⁰ + ……….∞)³ (p⁰ + p⁴ + p⁸ + p¹² + p¹⁶ + p²⁰)
=  Coefficient of p²⁰ in  
{\left( {\frac{1}{{1 - p}}} \right)^3} (p⁰ + p⁴ + p⁸ + p¹² + p¹⁶ + p²⁰)
=  Coefficient of p²⁰ in (1-p)⁻³ (p⁰ + p⁴ + p⁸ + p¹² + p¹⁶ + p²⁰)
= ²²C₂ + ¹⁸C₂ + ¹⁴C₂ + ¹⁰C₂ + ⁶C₂ + 1
536 Answer

(Q). Find number of non-negative integral solution of inequality
x₁ + x₂ + x₃ + x₄ + x₅ ≤ 20
Solution:- 

x₁ + x₂ + x₃ + x₄ + x₅ + k = 20         where 20≥k≥0
when k=0 then x₁ + x₂ + x₃ + x₄ + x₅ = 20
when k=1 then x₁ + x₂ + x₃ + x₄ + x₅ = 19
when k=2 then x₁ + x₂ + x₃ + x₄ + x₅ =18
           ⋮                                                            ⋮
           ⋮                                                            ⋮
           ⋮                                                            ⋮
           ⋮                                                            ⋮ 
when  k=20 then x₁ + x₂ + x₃ + x₄ + x₅ = 0

So on depending value of k (20≥k≥0)
value of expression automatically becomes
x₁ + x₂ + x₃ + x₄ + x₅ ≤ 20
                   

x₁ + x₂ + x₃ + x₄ + x₅ + k = 20 where 20⩾x, x⩾0 20⩾k⩾0

Hence number of intergral solution = ⁵⁺²⁰C₅ = ²⁵C₅ Answer

(Q). Find Number of integral solution off equation
x₁ + x₂ + x₃ + x₄ = 20               
                                             ;where x₁≥2
                                                            x₂≥4
                                                            x₃≥0
                                                            x₄≥6
Solution:-

Method(1):

 

= 202 4 0 612(20-12=8)C = C Answer

Method(2): Using Multinomial theorem:-

Coefficient of p²⁰ in (p² + p³ + p⁴ + ……… + p²⁰)(p⁴ + p⁵ + p⁶ + ……… + p²⁰)(p⁰ + p¹ + p² + p³ + …….. + p²⁰)(p⁶ + p⁷ + p⁸ + ….. + p²⁰)
= Coefficient of p²⁰ in (p² + p³ + p⁴ + …….. + ∞)(p⁴ + p⁵ + p⁶ + ……… ∞)(p⁰ + p¹ + p² + p³ + …….. ∞)(p⁶ + p⁷ + p⁸ + ….. ∞)
= Coefficient of p²⁰ in  \left( {\frac{{{p^2}}}{{1 - p}}} \right)\left( {\frac{{{p^4}}}{{1 - p}}} \right)\left( {\frac{1}{{1 - p}}} \right)\left( {\frac{{{p^6}}}{{1 - p}}} \right)
=Coefficient of p²⁰ in p¹²(1-p)⁻⁴
= Coefficient of p⁸ in (1-p)⁻⁴
=⁸⁺³C₃
¹¹C₃ Answer 

(Q). Find number of non-negative integral solution of 
a + b + c + d + e + f = 30
                     a + b + c = 17
Solution:-

a + b + c + d + e + f = 30 a + b + c = 17a + b + c = 17d + e + f = 13............. equation (i)............. equation (ii)both equation should be satisfied simultaneouslyHence Answerequation (i) AND equation (ii) should satisfy simultaneously

(Q). There are two sections A & B and there are 16 intermediate stations between A & B. A train is going from station A toward station B. In how many ways train can stop at 4 stations if no two stations should be consecutive. Train can take stoppage at any of these A, B & 16 intermediate stations.
Solution:-

(4)StoppageTrain⩾0 ⩾1 ⩾1 ⩾1 ⩾0 = 18 - 4(16 + 2 )AB = 14 Answer 1 1 1

(Q). There are 18 chairs. These chairs are to be occupied by 4 students. Find the number of possible arrangement if:-
(i) No two students sit side-by-side.
(ii) There should be atleast 3 empty chairs between any two students.
Solution:-

(i) 

= (18 -4)×4! Answer 1 1 1 ⩾0 ⩾1 ⩾1 ⩾1 ⩾0(ii)⩾0 ⩾3 ⩾3 ⩾3 ⩾0 = (14) 3 3 3= ×4! Answer

(Q) There are unlimited number of balls of colours Red, Green, Blue & White. They are all alike except for colour. In how many ways 20 balls can be selected?
Solution:-

R + B + G + W = 20⩾0 ⩾0 ⩾0 ⩾0= Answer

(Q). Let a student can score maximum 100 marks in physics, chemistry & math each. Then find the number of ways in which he can score a total of 170 marks while getting atleast 50 marks in each subjects. Only integral marks are allowed.
Solution:-

P    +    C    +    M = 170
                                                  100≥P≥50
                                                  100≥C≥50
                                                  100≥M≥50
Using Multinomial theorem

Coefficient of in (We can not extend this to unlimited terms in this questionbecause we are to find the coefficient of while gettingthe max tern in this G.P. i.e. Coefficient of in = Coefficient of in = Coefficient of in (1-(1-)w This term does not have any contribution to make powerof Hence we can ignore it.= Coefficient of in (1-= Answer

(Q). In the above question if the total numbers (marks) required are 240.
Solution:-
Coefficient of x²⁴⁰ in  {\left[ {\frac{{{x^{50}}(1 - {x^{51}})}}{{(1 - x)}}} \right]^3}
= Coefficient of x²⁴⁰ in x¹⁵⁰(1-x⁵¹)³(1-x)⁻³

= Coefficient of x⁹⁰ in (1-x⁵¹)³(1-x)⁻³In this case terms can not be neglected becausse it has contribution to make power of x

= Coefficient of x⁹⁰ in (1-x⁵¹)³(1-x)⁻³
= Coefficient of x⁹⁰ in (1 – 3x⁵¹ + 3x¹⁰² – x¹⁵³)(1-x)⁻³
                                        
⁹⁹C₂ – 3.⁴¹C₂ Answer

(Q). In how many ways a batman can score 20 runs out of six balls if he can score 0, 1, 2, 3, 4, 5 or 6 runs at a particular ball?
Solution:-

x₁ + x₂ + x₃ + x₄ + x₅ + x₆ = 20
                                                                6≥x₁, x₂, x₃, x₄, x₅, x₆≥0
∴ Coefficient of p²⁰ in (p⁰ + p¹ + p² + p³ + p⁴ + p⁵ + p⁶)⁶
= Coefficient of p²⁰ in  {\left[ {\frac{{(1 - {p^7})}}{{(1 - p)}}} \right]^6}
= Coefficient of p²⁰ in (1 – p⁷)⁶(1 – p)⁻⁶

 

= Coefficient of p in (1-ignore ignore

²⁵C₅ – ⁶C₁×¹⁸C₅ + ⁶C₂×¹¹C₅ Answer

(Q). a+b+c+d+e+f = 20; find the number of integral solution of this equation
If 10≥a≥5
     b, c, d, e≥0
Solution:- 

= Unfavourable casesa⩾5 a⩾11Answer
a + b + c + d + e + f = 20 ⩾0 ⩾0 ⩾0 ⩾0 8⩾a⩾510⩾b⩾7(Q).Solution: -Method (1):a⩾5 & b⩾7All cases where a⩾5 & b⩾7 - C - C + 1a⩾9 & b⩾7b⩾22 & a⩾5= 1036 Answer

Method (2):

Coefficient of  p²⁰ in (p⁵ + p⁶ + p⁷ + p⁸)( p⁷ + p⁸ + p⁹ + p10)(p⁰ + p¹ + p² + p³ + ……. + p²⁰)⁴
= Coefficient of  p²⁰ in p⁵(1 + p + p² + p³).p⁷.(1 + p + p² + p³)(1 + p + p² + p³+ …….. p²⁰)⁴
= Coefficient of  p²⁰ in p¹²(1 + p + p² + p³)²((1 + p + p² + p³ + ……… + p²⁰)⁴
= Coefficient of p⁸ in  {\left[ {\frac{{1 - {p^4}}}{{1 - p}}} \right]^2}{\left[ {\frac{1}{{1 - p}}} \right]^4}
= Coefficient of p⁸ in (1-p⁴)²(1-p)⁻⁶
= Coefficient of p⁸ in (1-2p⁴+p⁸)(1-p)⁻⁶
= ¹³C₅ – 2×⁹C₅ + 1
1036 Answer

(Q). Find number of integral solution of equation
x₁ + x₂ + x₃ + x₄ + x₅ = 48
if x₁, x₂, x₃, x₄, x₅ 
← evennumbers; ≥0
Solution:-

2n₁ + 2n₂ + 2n₃ + 2n₄ + 2n₅ = 48
⟹ n₁   +   n₂   +   n₃   +   n₄   +   n₅ = 24
      ≥0       ≥0         ≥0      ≥0         ≥0
²⁸C₄ Answer