Select Page

(Q). Find the number of trailing zeros in 1!.2!.3!.4!.5!………148!.149!.150!.

Solution:-

1! till 4! will have same number of trailing zeros.
5! till 9! will have same number of trailing zeros.
10! till 14! will have same number of trailing zeros.
15! till 19! will have same number of trailing zeros.
.
.
.
.
.
.
95! till 99! will have same number of trailing zeros.
.
.
.
.
.
.
140! till 144! will have same number of trailing zeros.
& 145! till 149! will have same number of trailing zeros.
So divide above number in group of five-five factorial numberes which have same number of trailing zeros.

➟ (1!.2!.3!.4!)(5!.6!.7!.8!.9!)(10!.11!.12!.13!.14!)(15!.16!.17!.18!.19!)(20!.21!.22!.23!.24!)………..(95!.96!.97!.98!.99!)……..(145!.146!.147!.148!.149!)(150!).

⇨ now number of trailing zeros in first group i.e. (1!.2!.3!.4!) = 0

5! till 9! will have number of trailing zeros: 1 → ⇨ Now number of trailing zeros in first group i.e.(1!.2!.3!.4!) = 0Total05101520303540455060657075809095100105110120125130135140155160165170175371555551190011⇨ 10! till 14! will have number of trailing zeros: 2 ⇨ 15! till 19! will have number of trailing zeros: 3⇨ 20! till 24! will have number of trailing zeros: 4⇨ 25! till 29! will have number of trailing zeros: 6⇨ 30! till 34! will have number of trailing zeros: 7⇨ 35! till 39! will have number of trailing zeros: 8⇨ 40! till 44! will have number of trailing zeros: 9⇨ 45! till 49! will have number of trailing zeros: 10⇨ 50! till 54! will have number of trailing zeros: 12⇨55! till 59! will have number of trailing zeros: 13⇨60! till 64! will have number of trailing zeros: 14⇨65! till 69! will have number of trailing zeros: 15⇨70! till 74! will have number of trailing zeros: 16⇨75! till 79! will have number of trailing zeros: 18⇨80! till 84! will have number of trailing zeros: 19⇨85! till 89! will have number of trailing zeros: 20⇨90! till 94! will have number of trailing zeros: 21⇨95! till 99! will have number of trailing zeros: 22⇨100! till 104! will have number of trailing zeros: 24⇨105! till 109! will have number of trailing zeros: 25⇨110! till 114! will have number of trailing zeros: 26⇨115! till 119! will have number of trailing zeros: 27⇨120! till 124! will have number of trailing zeros: 28⇨125! till 129! will have number of trailing zeros: 31⇨130! till 134! will have number of trailing zeros: 32⇨135! till 139! will have number of trailing zeros: 33⇨140! till 144! will have number of trailing zeros: 34⇨145! till 149! will have number of trailing zeros: 35⇨ & 150! will have number of trailing zeros: 37

Hence number of trailing zeros or highest power of 5 in given question will be the sum of all theser total values = 2612 Answer