Select Page

(Q). Find the highest power of 12 in 10² × 11² ×12² × 13² ×……….× 30² × 31².

Solution:

10² × 11² ×12² × 13² ×……….× 30² × 31²
= (10 × 11 × 12 × 13 ×……….× 30 × 31)²

 =  {\left( {\frac{{31!}}{{9!}}} \right)^2}
so we have to find the highest power of 12 in  {\left( {\frac{{31!}}{{9!}}} \right)^2}

now ⇒ 12 = 2² × 3

Highest power of 2 in 31! & Highest power of 2 in 9!2222222223115731094210H = 26H = 7

∴ Highest power of 2 in \frac{{31!}}{{9!}} = 26 – 7 = 19
Highest power of 2 in {\left( {\frac{{31!}}{{9!}}} \right)^2} = (19) × 2 = 38
Highest power of 2² in {\left( {\frac{{31!}}{{9!}}} \right)^2} = \frac{{38}}{2} = 19

Now highest power of 3 in 

31! & 9!333333331103109310H = 14H = 4

∴ Highest power of 3 in \left( {\frac{{31!}}{{9!}}} \right) = 14 – 4 = 10
Highest power of 3 in {\left( {\frac{{31!}}{{9!}}} \right)^2} = 10 + 10 = 20

Hence highest power of 12 in {\left( {\frac{{31!}}{{9!}}} \right)^2}
= Minimum of (Highest power of 2² in {\left( {\frac{{31!}}{{9!}}} \right)^2} & Highest power of 3 in {\left( {\frac{{31!}}{{9!}}} \right)^2})

= 19 Answer