Select Page

(Q). Consider a set s = {1, 2, 3, ………., 200}, two elements p and q are selected from this set s such that 7ᵖ + 7ᑫ is divisible by 5. In how many ways this selection can be done?
Solution:-
For a number to be divisible by 5, its last digit i.e. unit digit should be either 0 or 5 and unit digit of 7ⁿ can be 1, 3, 7 or 9
type of n                Unit digit
      7⁴ˣ                                 1
      7⁴ˣ⁺¹                             7
      7⁴ˣ⁺²                             9
      7⁴ˣ⁺³                             3

Hence from any combination of above unit digit taken two at a time last 5 can not be acheived but we can acheive last digit as 0 in the following way:-
     p                  q
    4x                4x + 2
   4x + 2             4x
   4x + 3          4x + 1
   4x + 1          4x + 3

Here in set s = {1, 2, 3, 4, 5, ……………, 200}
Number of numbers of 4x type = 50
Number of number of 4x + 1 type = 50
Number of number of 4x + 2 type = 50
Number of number of 4x + 3 type = 50

∴ required number of ways of selection
= ⁵⁰C₁×⁵⁰C₁ + ⁵⁰C₁×⁵⁰C₁ + ⁵⁰C₁×⁵⁰C₁ + ⁵⁰C₁×⁵⁰C₁
= 4×⁵⁰C₁×⁵⁰C₁
= 4×50×50
10000 ways            Answer