Select Page

(Q). An expression is given below:
N = 1! + 2! + 3! + 4! + 5! + ………. + 99! + 100!
(i) Find the unit digit of N
(ii) Find the last two digit of N
(iii) What will be the remainder when N is divided by 7.

Solution:- 
(i)

1! = 12! = 23! = 64! = 125! = 1206! = 7207!100!Summation of U𝒹 = 13 ⇒ ∴ U𝒹 = 3U𝒹 is 0unit digit is surely 0

Hence U𝒹 of N = 3 + 0 + 0 = 3 Answer

(ii) Last two digit of N = ?

1! = 12! = 23! = 64! = 125! = 1206! = 7207! = 50408! = 403209! = 36288010! = 362880011!100! last two digit of this summation = 13last two digit = 00

Hence last two digit of N = 13 + 00
                                              = 13 Answer

(iii) Remainder when N is divided by 7 = ?

Since \frac{{7!}}{7} ➜ R = 0
           
\frac{{8!}}{7} ➜ R = 0

           \frac{{9!}}{7} ➜ R = 0
            
            
            

          \frac{{100!}}{7} ➜ R = 0
So final remainder will be
Remainder of \left( {\frac{{1! + 2! + 3! + 4! + 5! + 6!}}{7}} \right)

= Remainder of \left( {\frac{{873}}{7}} \right)

= 5 Answer