Select Page
case (3):Distinct objectIdentical groupAny way (No Restriction)Each group must containatleast one object (⩾1)

In this type of question wee will be required to find the value of Stirling Number of Second Kind.
Stirling Number of Second Kind:
Formula for Stirling number of second kind is :-

S(n,r) = S(n-1, r-1) +r.S(n-1, r)Recursive formulaSpecial cases: - S(0, 0) = 1S(n, n) = 1S(n, 1) = 1S(n, 2) = 2 - 1S(n, n-1) = S(n, k) = 0 if k>nDirect formula: -S(n, r) = - C (r-1) + C (r-2) - ......... + (-1) C1]Let us calculate the value of S(9, 4) using Recursive method: - S(9, 4) = S(8, 3) + 4.S(8, 4) = S(7, 2) + 3.S(7, 3) + 4[S(7, 3) + 4.S(7, 4)] = (2 - 1) + 3[S(6, 2) + 3.S(6,3)] + 4S(7, 3) + 16S(7, 4)

= 63 + 3S(6, 2) + 9S(6, 3) + 4S(7, 3) + 16S(7, 4)
= 63 + 3(2⁶⁻¹ – 1) +9S(6, 3) + 4S(7, 3) + 16S(7, 4)
= 63 + 3×31 + 9[S(5, 2) + 3S(5, 3)] + 4[S(6, 2) + 3S(6, 3)] + 16[S(6, 3) + 4S(6, 4)]
= 156 + 9(2⁵⁻¹ – 1) +27S(5, 3) +4(2⁶⁻¹ – 1) + 12S(6, 3) + 16S(6, 3) + 64S(6, 4)
= 156 + 9×15 + 27S(5, 3) + 4×31 + 28S(6, 3) + 64S(6, 4)
= 415 + 27[S(4, 2) + 3S(4, 3)] + 28[S(5, 2) + 3S(5, 3)] + 64[S(5, 3) + 4S(5, 4)]
= 415 + 27[(2⁴⁻¹ – 1) + 3×⁴C₂] + 28[(2⁵⁻¹ – 1) + 3S(5, 3)] + 64[S(5, 3) + 4×⁵C₂]
= 415 + 27×7 + 81×6 + 28×15 + 84S(5, 3) + 64S(5, 3) + 64×4×10
= 4070 + 148S(5, 3)
= 4070 + 148[S(4, 2) + 3S(4, 3)]
= 4070 + 148[(2⁴⁻¹ – 1) + 3×⁴C₂]
 4070 + 148[7 + 3×6]
 = 4070 + 148×25
7770 Answer

Let us calculate the value of S(9, 4) using direct formula:-

S(9, 4) = = - 4×1] = ×186480 = 7770 Answern r

Now come to question:-
(Q). In how many ways 7 people can be divided into 3 identical groups.
Solution:-

Since Groups are identical i.e. indistinguishable. So a particular object is in which group it does not matter. The only thing which matters is which objects are selected together.

7Identicalcase (1): 7 0 0case(2): 6 1 0case(3): 5 2 0case(4): 5 1 1case(5): 4 3 0case(6): 4 2 1case(7): 3 3 1case(8): 3 2 2

∴ Total number of ways = 1 + 7 + 21 + 21 + 35 + 105 + 70 + 105
                                           =  365 ways Answer

(Q). In the previous question if the condition is that no group should be empty i.e. all groups should have at least one object.
Solution:-

So we need to consider only 4ᵗʰ, 6ᵗʰ, 7ᵗʰ & 8ᵗʰ cases.
which gives  21 + 105 + 70 + 105 = 301 ways Answer

⦿ These were the manual way to do these type of questions. Now we will use Stirling number to solve these type of problems:-

case (3):Distinct objectIdentical groupAny way (No Restriction)Each group must containatleast one object (⩾1)(n)(r)rS(n, i)S(n, r)

(Q). (previous question); In how many ways 7 people can be distributed into 3 identical groups anyway.
Solution:-

\sum\limits_{i = 1}^3 {S(7,i)}     = S(7, 1) + S(7, 2) + S(7, 3)
                                  ↓
                          =     1     + (2⁷⁻¹ – 1) + S(7, 3)  
                          = 64 + S(7, 3) 
                          = 64 + \frac{1}{{3!}}[³C₀ 3⁷ – ³C₁ 2⁷ + ³C₂ 1⁷ ]
                          = 64 + \frac{1}{6}[ 1×2187 – 3×128 + 3×1 ]
                          = 64 +  \frac{1}{6}×1806
                          = 64 + 301
                          = 365 Answer

(Q). In how many ways 7 people can be distributed into 3 identical groups if each group gets at least 1 people(i.e. no group is empty).
Solution:-
 

S(7, 3) = 301 Answer

(Q). In how many ways 5 distinct balls can be distributed to 10 identical bags:-
        (i) without any restriction
        (ii) each bag gets atleast 1 ball
        (iii) each bag gets at most 1 ball.
Solution:-

(i)= S(5, 1) + S(5, 2) + S(5, 3) + S(5, 4) + S(5, 5) + S(5, 6) + S(5, 7) + S(5, 8) + S(5, 9) + S(5, 10)= 1 + (2 - 1) C + 1 + 0 + 0 + 0 + 0 + 0S(5, 3) = [ C 3 -C 2 + C 1 ] = = = 25Hence Answer = 1 + 15 + 25 + 10 + 1 = 52 Answer

(ii) 0 Answer

(iii) 1 Answer