Select Page

Factor Theory Concept 

Consider a composite number n 
n = aᵖbᑫcʳ………..
where a, b, c are prime numbers & p, q, r are natural numbers.Then
Number of factors of n is given by:-

(p + 1)(q+ 1)(r + 1).........When1 and the number itself is included

Proof:- A factor of above number has power of a as a⁰ or a¹ or a² or a³ or ……….. aᵖ

similarly, A factor of above number has power of b as b or b¹ or b² or b³ or ……….. bᑫ
                 A factor of above number  has power of c as c⁰ or c¹ or c² or c³ or ……….. cʳ

Hence factors having a⁰ or any value of a can be (p + 1)
similarly, factors having b⁰ or any value of b can be (q + 1)

             factors having c⁰ or nay value of c can be (r + 1)
& when we take any combination of these then total number of factors = (p + 1)(q + 1)(r + 1)…….. 
                                             where 1 & the number itself is included.

 

Hence n = abcd(p + 1) ways(q + 1) ways(r + 1) ways(s + 1) ways

Example:- Find the total number of factors of 2⁴3²5³7⁵.
Solution:-

2 × 3 × 5 × 7(0, 1, 2, 3, 4)(0, 1, 2)(0, 1, 2, 3 )(0, 1, 2, 3, 4, 5)5 ways 3 ways 4 ways 6 ways

∴ Total numbers of factors = 5 × 3 × 4 × 6
                                                  = 360 Answer

Example:- Find the number of odd factors of 2⁴3²5³7⁵
Solution:-

 

2 × 3 × 5 × 7(0)(0, 1, 2)(0, 1, 2, 3 ) (0, 1, 2, 3, 4, 5)1 ways 3 ways 4 ways 6 ways

∴ Total number of odd factors = 1×3×4×6
                                                        = 72 Answer

Example:- Find the number of even factors of 2⁴3²5³7⁵
Solution:- 

2 × 3 × 5 × 7(1, 2, 3, 4)(0, 1, 2)(0, 1, 2, 3 ) (0, 1, 2, 3, 4, 5)4 ways 3 ways 4 ways 6 ways

∴ Total number of even factors = 4×3×4×6
                                                         = 288 Answer

Example:- Find the number of factors of 2⁴3²5³7⁵ that are divisible by 10.
Solution:-

2 × 3 × 5 × 7(1, 2, 3, 4)(0, 1, 2)(1, 2, 3 ) (0, 1, 2, 3, 4, 5)4 ways 3 ways 3 ways 6 ways

∴ Total number of factors divisible by 10 = 4×3×3×6
                                                                           = 216 Answer

Example:- Find the number of factors of 2⁴3²5³7⁵ that are not divisible by 10.
Solution:-
required answer = Total factors – factor divisible by 10
=360 – 216
=144 Answer

Example:- Find the number of factors of 2⁴3²5³7⁵ that are divisible by 100.
Solution:-
 

 

2 × 3 × 5 × 7(2, 3, 4)(0, 1, 2)(2, 3 ) (0, 1, 2, 3, 4, 5)3 ways 3 ways 2 ways 6 ways

∴ Total number of ways = 3×3×2×6
= 108 Answer